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Anchoring of Polymers by Traps Randomly Placed on
a Line
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We study the dynamics of a Rouse polymer chain which diffuses in a three-
dimensional space under the constraint that one of its ends, referred to as the
slip-link, may move only along a one-dimensional line containing randomly
placed, immobile, perfect traps. Extensions of this model occur naturally in
many fields, ranging from the spreading of polymer liquids on chemically active
substrates to the binding of biomolecules by ligands. For our model we succeed
in computing exactly the time evolution of the probability Psl(t) that the chain
slip-link will not encounter any of the traps until time t and, consequently, that
until this time the chain will remain mobile.

KEY WORDS: Rouse model; anomalous diffusion; trapping.

I. INTRODUCTION

The time evolution of the survival probability P(t) of particles diffusing in
a d-dimensional space in the presence of immobile, randomly placed traps
has been widely discussed in the physical and mathematical literature
within the last two decades. An interest in this problem has been inspired
by the evident physical significance of the subject (excitation and charge
motion, photoconductivity, photosynthesis). Further on, such an interest
has been stimulated by an important observation(1) that P(t) exhibits a
non-mean-field long-time behavior, which is intimately related to the so-
called Lifschitz singularities near the edge of the band in the density of
states of a particle in quantum Lorentz gas and is reflected in the moment
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generating function of the so-called Wiener sausage.(2, 3) Later works (see,
e.g., refs. 4 and 5) have also pointed out the relevance of the issue to per-
colation, self-avoiding random walks or self-attracting polymers, as well as
to the anomalous behavior of the ground-state energy of a Witten's toy
Hamiltonian in supersymmetric quantum mechanics.(6) Of extreme impor-
tance now is the correlated motion in the presence of traps, i.e., the motion
of several particles bond together, such as occurs naturally in polymers and
in biomolecules immersed in chemically active medium. A few pertinent
examples are the formation of polymer brushes at interfaces and networks,
i.e., kinetic grafting of carboxy-terminated polystyrene chains on epoxy
networks or adsorption of polymer functional groups on colloidal particles
or on the network strands of a gel, (7, 8) the spreading of polymer liquids
on substrates with chemically active sites(9) or, especially, the kinetics of
binding of biomolecules by specific ligands.(10�12)

In the case of single particles various analytical techniques have been
elaborated to calculate P(t), including an extension of the ``optimal fluctua-
tion'' method, (1) different methods of evaluating upper and lower bounds
(see, e.g., refs. 2, 3, 13�15), Green functions approaches, (4) field-theoretic
treatments, (5) as well as a variety of mean-field-type descriptions (see
refs. 16�18 and references therein). These studies have revealed a two-stage
decay pattern of the form

ln P(t) B {&ntr,d (t),
&n2�(d+2)

tr td�(d+2),
tm<<t<<tc ,
t>>tc ,

(A)
(B)

(1)

where ntr denotes the mean density of traps, tm is a microscopic time scale
and tc denotes the crossover time between the intermediate- (A) and long-
time (B) kinetic stages. Further on, the function ,d (t) appearing in Eq. (1.A)
defines the mean volume of the so-called Wiener sausage (see, e.g., ref. 2)��
i.e., the mean volume swept by a diffusive spherical particle during time t.
Its discrete-space counterpart, i.e., an analog of ,d (t) defined for lattice
random walks, is referred to as the mean number of distinct sites visited by
a particle up to the time t (see ref. 22 for more details). The functional form
of ,d (t) is different for different spatial dimensions d and obeys:

t1�2, d=1

,d (t) B {t�ln(t), d=2 (2)

t, d�3

The physical behavior underlying the kinetic regimes described by
Eqs. (1.A) and (1.B) has also been elucidated. It has been understood that
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Eqs. (1.A) and (1.B) are supported by completely different realizations of
random walk trajectories: The intermediate-time behavior described by
Eq. (1.A) is associated with typical realizations of random walk trajectories
and is consistent with the predictions of the mean field, Smoluchowski-type
approaches;(4, 16�18, 20�22) namely, ,d (t)=� t dt$ kSmol(t$), (4) where kSmol(t) is
the so-called Smoluchowski constant, which equals the diffusive current
through the surface of an immobile d-dimensional sphere. On the other
hand, the long-time asymptotical form in Eq. (1.B) showing a slower time-
dependence compared to the intermediate-time decay law, stems from the
interplay between fluctuations in the spatial distribution of traps (namely,
on the existence of rare but sufficiently large trap-free cavities), and atypical
realizations of random walk trajectories which do not leave such cavities
during the time of observation. Note also that Eq. (1.B) describes the
anomalous long-time tail of the moment generating function for the Wiener
sausage volume.(2)

Due to the general interest in fractal structures as useful approximate
models of disordered media, and�or anomalous diffusion, Eq. (1) for single
particles has been extended(18, 20�22) to describe trapping of random walkers
on random or regular structures characterized, in the general case, by a
non-integer spatial dimension df and anomalous diffusion exponent dw , the
latter being defined through the relation describing the time-dependence of
the second moment of the particle's displacement, r2(t)tt 2�dw, where d|

may be different from the value d|=2, which holds for conventional dif-
fusive motion in Euclidean d-dimensional space.(20�22) For such systems
heuristic agruments(18�23) suggest that P(t) follows an asymptotic behavior
of the form

ln P(t) B {&ntr,� d (t),
&ndw �(df +d|)

tr t d f �(d f +d|),
tm<<t<<tc ,
t>>tc ,

(A)
(B)

(3)

with

t df �d|, df <d|

,� d (t) B {t� ln(t), df =d| (4)

t, df >d|

Note, that here df can attain integer values and d| may be set equal to 2,
which leads to conventional diffusive motion in Euclidean space; then
Eq. (3) reduces to Eq. (1).

The decay patterns as in Eqs. (3) and (4) have been verified numeri-
cally for different types of fractal systems, such as, e.g., Sierpinski gaskets
or percolation clusters.(20�22) However, rigorous results describing the
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evolutional of P(t) in systems showing anomalous diffusion are lacking at
present.

In this paper we focus on the three-dimensional correlated motion of
many particles, linked into a polymer chain by harmonic springs, in the
presence of immobile traps distributed at random on a one-dimensional
line��say, a fiber. The chain contains a chemically active end-group
(referred to in what follows as a slip-link), which is constrained to move
along the fiber only and may react irreversibly with any of the traps, thus
anchoring the whole chain (Fig. 1). The chain's dynamics is described
within the framework of the customary Rouse model.(24) We aim to com-
pute here the time evolution of the probability Psl (t) that the slip-link will
not encounter any of the traps until time t, or, in other words, the prob-
ability that an initially unanchored chain will remain mobile until time t.
It appears that, despite the fact that the random motion of the slip-link is
non-Markovian and, generally, non-diffusive, we are able to compute Psl (t)
exactly starting from first principles. This allows us to show that Eqs. (3)
and (4) can be strongly generalized to account for the motion of correlated
particles; the decay form is then characteristic for the non-Markovian
nature of the underlying dynamics.

The paper is structured as follows: In Section 2 we formulate the
model. In Section 3 we discuss briefly the exact solution for the survival of
a single particle which diffuses on a line in the presence of randomly dis-
tributed traps, and then rederive this solution in terms of a path-integral
method. In Section 4 we describe, following(25) the path integral formalism
for evaluating the measure of trajectories covered by a tagged bead of a
Rouse chain. Next, we show how such a formalism can be applied for the
exact computation of the probability that the slip-link is not trapped until
time t. Finally, in Section 5 we conclude with a summary and discussion of
the obtained results.

II. THE MODEL

Consider a polymer chain embedded in three-dimensional space and
consisting of N beads (Fig. 1), which are connected sequentially by phan-
tom harmonic springs of rigidity K. The rigidity can be also expressed as
K=3T�b2, where T is the temperature (written in units of the Boltzmann
constant kB) and b is the mean equilibrium distance between beads.
Further more, the positions of all beads are denoted by r� j=(xj , yj , zj ),
where the subscript j enumerates the beads along the chain, j=[0, N]. All
beads, except the slip-link ( j=0), may move freely in 3d. On contrary, we
stipulate that the slip-link is constrained to move only along the X-axis,
such that its position in space is given solely by the X-component of the
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Fig. 1. Polymer chain with an active particle attached to one of its extremities (the slip-link).

vector r� 0 , since y0 and z0 must always equal zero. Then the potential
energy U([r� j ]) of such a chain is given by

U([r� j ])=
K
2

:
N&1

j=0

(r� j+1&r� j )2

=
K
2 _ :

N&1

j=0

(xj+1&xj )
2+ :

N&1

j=1

[( yj+1& yj )
2+(zj+1&zj )

2]& (5)

Next, apart from the holonomic constraints imposed by the springs,
the beads experience the action of random forces f9 j (t). These random forces
are assumed to be Gaussian and uncorrelated in time and space; their
Cartesian components fj, :(t), where :=x, y, z, obey:

fj, :(t)=0
(6)

fj, :(t) fj $, :$(t$)=2`T$j, j $ $:, :$ $(t&t$)

where the bar stands for averaging over thermal histories and ` is the
macroscopic friction coefficient.

In the absence of excluded-volume effects, the dynamics of the Rouse
chain is guided by the corresponding Langevin�Rouse equations(24)

`r�4 j=&
$U([r� j ])

$r� j
+ f9 j (t) (7)
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where the dot denotes the time derivative. As one can verify readily, for the
potential energy given by Eq. (5) the equations for the r� j decouple with
respect to the Cartesian components. That is, the dynamics of, say, xj , is
independent of yj and zj and reads

`x* j=K(xj+1+xj&1&2xj )+ f j, x(t) (8)

which equation holds for j=1,..., N&1. On the other hand, the displace-
ments of the chain's extremities along the X-axis, i.e., x0 and xN , obey

`x* 0=K(x1&x0)+ f0, x(t) (9)

and

`x* N=K(xN&1&xN )+ fN, x(t) (10)

Hence, with regards to polymer dynamics, one faces an effectively one-
dimensional model.

Lastly, we suppose that the N-axis contains perfect, immobile traps,
which are placed at random positions with mean density ntr . The positions
of the traps are denoted by [Xn], &�<n<�. According to our model,
the traps influence the dynamics of the polymer only by trapping
(immobilizing) the slip-link at the encounter. The influence of the trap on
the other beads (i.e., such that j # [1, N]) is indirect: as soon as the slip-
link gets immobilized by any of the traps, the chain becomes anchored as
a whole due to the links between the chain's monomers. Our aim is to com-
pute exactly the time evolution of the probability, Psl(t), that a polymer
chain with a slip-link sliding along the X-axis will not encounter any of the
traps (and thus will remain mobile until time t).

III. MONOMER TRAPPING ON A LINE

It seems instructive to recall first the time evolution of the survival
probability in the simplest case, for N=0, i.e., for a single chemically active
monomer diffusing on a one-dimensional line and reacting with randomly
placed, immobile traps. It is intuitively clear that for a Rouse chain con-
taining N beads, we should recover (apart from the renormalization of the
diffusion coefficient) at sufficiently long times the behavior predicted for a
single monomer, because for a finite chain the random motion of any of the
chain's beads ultimately follows the conventional diffusion of the chain's
center-of-mass.(24) On the other hand, at shorter times substantial devia-
tions between the motion of the monomer and of the center-of-mass are to
be found, due to the essentially non-diffusive characted of the slip-link
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motion, induced by the internal degrees of freedom of the polymer. This
anomalous regime stemming from the internal relaxation modes of the
chain will cause significant departures from the decay forms described by
Eq. (1). The derivation of decay laws associated with this anomalous
regime is the primary goal of the present paper and will be discussed in the
next section.

As one may expect, in one-dimensional systems the situation simplifies
considerably, since here the diffusive particle can react only with two neigh-
boring traps and thus cannot leave the intertrap interval. This renders the
problem exactly solvable, reducing it to the analysis of the particle survival
inside a finite interval, followed by averaging over the distribution of the
intertrap intervals. We outline such a calculation following the seminal
method of ref. 1.

A. The One-Dimensional Exact Solution

We calculate first the probability 9(x, x(0), t | L) that a diffusive par-
ticle (whose diffusion coefficient is D=T�`), which starts at x(0) will not
encounter the traps at X0=0 and at X1=L until time t. This probability
follows as the solution of the following one-dimensional boundary problem:

�9(x, x(0), t | L)
�t

=D
�29(x, x(0), t | L)

�x2{9(x, x(0), t | L)|x=0=9(x, x(0), t | L)| x=L=0 (11)

9(x, x(0), t=0 | L)=$(x&x(0))

The solution of Eqs. (11) can be readily found by standard means and
takes the form of a Fourier series:

9(x, x(0), t | L)=
2
L

:
�

n=1

exp \&
?2n2Dt

L2 + sin \?nx
L + sin \?nx(0)

L + (12)

Now, to compute the monomer survival probability we turn to the posi-
tion-averaged function

9(t | L)=
1
L |

L

0
|

L

0
dx(0) dx 9(x, x(0), t | L) (13)

which can be computed from Eq. (12) and reads

9(t | L)=
8
?2 :

�

l=0

(2l+1)&2 exp \&
?2(2l+1)2 Dt

L2 + (14)

287Anchoring of Polymers by Traps Randomly Placed on a Line



Next, the desired survival probability of the diffusive monomer P(t) is
determined as the convolution

P(t)=|
�

0
dL 9mon(t | L) P(L) (15)

where P(L) is the probability density of having a trap-free void of length L.
For a completely random (Poisson) placement of traps P(L) reads:

P(L)=ntr exp(&ntrL) (16)

Consequently, one finds the following general expression determining the
monomer survival probability

P(t)=
8ntr

?2 :
�

l=0

(2l+1)&2 |
�

0
dL exp \&

?2(2l+1)2 Dt
L2 &ntrL+ (17)

The asymptotical behavior of the expression in Eq. (17) has been discussed
in detail in ref. 15; it has been shown that P(t) follows a two-stage decay
pattern as in Eq. (1). Explicitly on has

P(t)r{exp(&4ntr(Dt�?)1�2),
exp(&3(?2n2

tr Dt�4)1�3),
tm<<t<<tc ,
t>>tc ,

(A)
(B)

(18)

where the crossover time tc separating two regimes obeys tcr1�Dn2
tr , and

consequently, can be large if ntr is small.

B. Path-Integral Formulation of the Monomer Trapping
Problem in 1D

In this subsection we show how to recover the solution of the
monomer trapping problem in terms of the path-integral formalism, which
will be later used to determine the trapping kinetics of the slip-link. To do
this, we will proceed as follows:

We first write thee solution of Eq. (11) as an integral over Brownian
paths x({):

9(x, x(0), t | L)=
1

2 - ?Dt |
x

x(0)
D[x({)]

_exp {&
1

4D |
t

0
d{ \�x({)

�{ +
2

=} 0<x({)<L, { # [0; t]

(19)
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where D[x({)] denotes integration over the monomer trajectories x({),
the exponential is the standard Wiener measure, while the subscript
0<x({)<L, { # [0, t] signifies that the integral has to be calculated under
the constraint that none of the monomer's trajectories leaves the interval
[0, L] within the time period [0, t].

Next, to recover the series involved in Eq. (12), we multiply the
integrand by the periodic step function depicted in the figure below

Using the contour integral representation of such a step function(26)

u(x)=
1

2?i |
c+i�

c&i�

d* e&*x

*(1+e*L)
={1

0
if 2mL<x<(2m+1) L
if (2m+1) L<x<(2m+2) L

(20)

where m=0, 1, 2,..., we can rewrite Eq. (19) as

9(x, x(0), t | L)=
1

2 - ?Dt
:
�

m=&�

1
2?i |

c+i�

c&i�

d* e*x(0)

*(1+e*L)

_|
x

x(0)
D[x({)] exp[&S[x({)]] (21)

where the action S[x({)] is given by

S[x({)]=|
t

0
d{ { 1

4D \�x({)
�{ +

2

+* \�x({)
�{ += (22)

Now, to compute the path integral in Eq. (21) with the quadratic
action in Eq. (22) we have merely to define the action-minimizing trajec-
tory x~ ({) and calculate the action corresponding to such a trajectory. the
action-minimizing trajectory is defined by the classical Euler equation of
motion, which for the action in Eq. (22) is simply

d
d{ \

1
2D

dx~ ({)
d{

+*+=0
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Integrating this equation subject to the conditions x~ ({=0)=x(0) and
x~ ({=t)=x, we find

x~ ({)=(x&x(0))
{
t
+x(0) (23)

Consequently, the minimal action is given by

S[x~ (t)]=
(x&x(0))2

4Dt
+*(x&x(0))

and hence, the formal solution of the boundary problem in Eq. (11) can be
written down as

9(x, x(0), t | L)

=
1

2 - ?Dt
:
�

m=&�

1
2?i |

c+i�

c&i�

d*
*(1+e*L)

exp {&
(x&x(0))2

4Dt
+*x=

=
1

2 - ?Dt
:
�

m=&�

exp {&
(x&x(0)&2mL)2

4Dt = (24)

Next, using the well-known representation of Jacobi theta-function(26)

:
�

m=&�

q(m+a)2
=%3 \?a, exp \ ?2

ln q++ ln&1�2 1
q

and setting

q=exp \&
L2

Dt+ ; a=
x&x(0)

2L
(25)

we may rewrite Eq. (24) as

9(x, x(0), t | L)=
2
L

:
�

m=&�

exp \&
D?2m2t

L2 + cos \?m(x&x(0))
L +

=
2
L

:
�

m=&�

exp \&
D?2m2t

L2 +\ sin \?mx
L + sin \?mx(0)

L +
part A

+cos \?mx
L + cos \?mx(0)

L + + (26)

part B
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Note now that the contribution ``A'' (a product of two ``odd'' sine-functions
��see Eq. (26)) vanishes at x=0 and x=L. It thus mirrors the absorbing
boundary conditions relevant to the trapping problem, while the second
contribution ``B'' (a product of two ``even'' cosine-functions) corresponds to
the totally reflecting boundary conditions. To understand this result note
that the introduction of the step function does not force by itself the func-
tion 9(x, x(0), t | L) to vanish at the boundaries of the interval [0; L].
Thus, the expression in Eq. (26) in which only the odd contribution ``A'' is
taken into account coincides with the result presented in Eq. (12). It
follows that the asymptotical behavior of the monomer survival probability
can be evaluated in terms of the path-integral formalism by picking then
the odd contribution. We would like to note also that the construction we
have employed is nothing but the well known ``mirror principle,'' widely
used in electrostatics.

We conclude this subsection with the following prescription:

Prescription (the ``mirror principle''). To find the solution of
the diffusion problem with the Dirichlet boundary condition at the ends of
the segment [0, L], we have merely to: (a) obtain the Green's function solu-
tion 9(x, x(0), t) on the full line [x, x(0)] # ]&�, �[; (b) restrict x&x(0)
to the segment [0, L], perform the replacement x&x(0) � x&x(0)&2mL
and take the odd contribution to the sum ��

m=&� 9(x&x(0)&2mL, t).

IV. TRAPPING OF THE SLIP-LINK OF A POLYMER

To calculate the evolution of Psl(t) in the case of a slip-link attached
to a polymer chain, we will proceed essentially along the lines of the pre-
vious section. First, we present the derivation of 9sl(x0 , x0(0), t)��the
probability distribution for the displacements of the slip-link on an infinite
line without traps.(25) Then, using the above formulated prescription (the
``mirror principle''), we determine 9sl(x0 , x0(0), t | L)��the probability that
the slip-link of the chain, which is initially located at some point x0(0)
inside the interval [0, L], will not leave this interval until time t. Finally,
the desired probability Psl(t) will be obtained from 9sl(x0 , x0(0), t | L) by
averaging over the Poisson distribution of the interval's lengths.

A. The Probability Distribution of the Slip-Link Displacement

In this subsection we outline, following the analysis of ref. 25, the steps
involved in the derivation of the probability distribution 9sl(x0 , x0(0), t)
for the displacements of the slip-link on an infinite line.
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This probability can be written as

9sl(x0 , x0(0), t)=|
�

&�
} } } |

�

&�
dx1 } } } dxN 9(x0 , x1 ,..., xN , t) (27)

where [x0 , x1 ,..., xN]#[x1(t),..., xN(t)] here and henceforth denote the
coordinates of all chain segments at time t, while 9(x0 , x1 ,..., xN , t) is the
joint distribution function of the N beads of the polymer chain. In other
words, 9(x0 , x1 ,..., xN , t) is the probability of having the x-coordinates of
the N beads of the chain at the positions [xj (t)], provided that initially
they where at [xj (0)].

For the Rouse chain whose potential energy obeys Eq. (5), the time
evolution of the function 9(x0 , x1 ,..., xN , t) is governed by the following
Smoluchowski�Fokker�Planck equation:(24)

�
�t

9(x0 , x1 ,..., xN , t)

=D :
N

j=0

�
�xj \

�
�x j

+;
�

�xj
U(x0 , x1 ,..., xN)+ 9(x0 , x1 ,..., xN , t) (28)

where ;=1�T and D=T�` is the diffusion constant of an individual bead
(monomer). Equation (28) has to be solved subject to the initial condition:

9(x0 , x1 ,..., xN , t=0)= `
N

j=0

$(xj (t)&xj (0)) (29)

Eqs. (28)�(29) define completely the evolution function 9(x0 , x1 ,..., xN , t).
The computation of the probability distribution 9(x0 , x0(0), t) using

the path-integral formalism was first performed in ref. 25. Let us recall the
main steps of this approach. First of all, it is expedient to cast Eq. (28) into
the form of the (N+1)-dimensional Schro� dinger-type equation. This can
be readily performed by making use the following ansatz:

9(x0 , x1 ,..., xN , t)=exp {&
K(N+1)

2`
t&

;
2

U(x0 , x1 ,..., xN)=
_8(x0 , x1 ,..., xN , t) (30)

where the function 8(x0 , x1 ,..., xN , t) satisfies

�
�t

8(x0 , x1 ,..., xN , t)

=D :
N

j=0 \
�2

�x2
j

&;2K2(xj&1&2x j+x j+1)2+ 8(x0 , x1 ,..., xN , t) (31)
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Now, by virtue of the Feynmann�Kac theorem, the formal solution of
Eq. (31) can be written down explicitly as the following path-integral

8(x0 , x1 ,..., xN , t)=
1

N |
x0

x0(0)
} } } |

xN

xN (0)
`
N

j=0

D[xj ({)]

_exp[&S[x0({), x1({),..., xN({)]] (32)

where N is the normalization constant and the action S[x0({), x1({),...,
xN({)] has the form:

S[x0({), x1({),..., xN({)]

=|
t

0
d{ { 1

4D
:
N

j=0
\�xj ({)

�{ +
2

+D;2K 2 :
N&1

j=1

(xj&1({)&2xj ({)+xj+1({))2=
(33)

In the subsequent calculations we will not specify the normalization con-
stant and preexponential factors; all our results will hold thus only to
exponential accuracy.

Now, we suppose following ref. 25 that the slip-link moves along some
prescribed trajectory Xsl({); as a matter of fact, such a constraint allows to
symmetrize the boundary conditions for the action-minimizing trajectory,
which are otherwise different at different chain's extremities. Such a con-
straint can be taken into account by multiplying the integrand in Eq. (32)
by a functional delta-function of the form (see ref. 25 for details)

$(x0({)&Xsl({))=| D[m({)] exp {&i |
t

0
d{ m({)(x0({)&Xsl({))=

which means that the action in Eq. (33) is replaced by an effective action
of the following form:

S$[x0({), x1({),..., xN({)]

=|
t

0
d{ { 1

4D
:
N

j=0
\�xj ({)

�{ +
2

+D;2K2 :
N&1

j=1

(xj&1({)&2xj ({)+xj+1({))2+im({)(x0({)&Xsl({))=
(34)

and one has to perform afterwards an additional integration over the
measure D[m({)].
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Now, the action in (32) is minimal for classical trajectories satisfying
the Euler equation:

{ d
d{ \

�
�x* j+&

�
�xj = L(x* 0 , x* 1 ,..., x* N , x0 , x1 ,..., xN)=0; j # [0, N]

where L is the Lagrangian function:

L=
1

4D
:
N

j=0 \
�x j ({)

�{ +
2

+D;2K2 :
N&1

j=1

(xj&1({)&2xj ({)+x j+1({))2

+im({)((x0({)&Xsl({)) (35)

Turning to the continuous j-limit, one obtains the following Euler equa-
tion, determining the optimal trajectories of the chain's monomers:(25)

\ �
�{

&2K;D
�2

�j 2+\ �
�{

+2K;D
�2

�j 2+ x~ j ({)=4Di$( j) m({) (36)

which has to be solved subject to the boundary conditions (see ref. 25)

{
�x~ j ({)

�j } j=0, N
=0,

�3x~ j ({)
�j 3 } j=0, N

=0

�x~ j ({)
�{

=&2K;D
�2x~ j ({)

�j 2 } {=0

,
�x~ j ({)

�{
=+2K;D

�2x~ j ({)
�j 2 } {=t

(37)

The action-minimizing trajectories x~ j ({), defined by the boundary
problem (36)�(37), are obtained explicitly(25) in form of a series expansion
over the normal Rouse modes:(24)

x~ j ({)=&
2iN

?2K;
:
�

p=1

p&2 cos \?pj
N + |

t

0
d{$ m({$) exp {&

|{&{$|
{R

p2= (38)

where {R=`N 2�2?2K is the largest fundamental relaxation time of the har-
monic chain, i.e., the so-called Rouse time. This time may be interpreted as
being the time needed for some local defect, e.g., kink, to spread out dif-
fusively along the arclength of the chain.

Next, substituting the expression for the optimal trajectory in Eq. (38)
into Eq. (35) and performing the integration over D[m({)], one arrives at
the following general result:(25)
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9sl(x0 , x0(0), t)

=
1

N |
x0

x0(0)
D[Xsl({)] exp _&|

t

0 \
dXsl({)

d{ + d{ |
{

0 \
dXsl({$)

d{$ + d{$ ,({&{$)&
(39)

where ,({&{$) is given by

,({&{$)r{
N
4D

$({&{$),

\;K
D +

1�2

|{&{$| &1�2,

|{&{$|>{R ,

|{&{$|<{R ,

(A)

(B)
(40)

Equations (39) and (40) represent the desired generalization of the classical
Wiener result for the measure of Brownian particle trajectories to the more
complicated case of a particle attached to a diffusive Rouse chain.

Finally, in order to compute the probability 9sl(x0 , x0(0), t | L) that
the slip-link of the Rouse chain will remain until time t within the interval
[0, L], we make use of the ``mirror principle'' prescription of the previous
section. Multiplying the integrand in Eq. (39) by a step-function, we get

9sl(x0 , x0(0), t | L)

=
1

N
:
�

m=&�

1
2?i |

c+i�

c&i�

d* e*x0(0)

*(1+e*L) |
x0(0)

x0

D[Xsl({)] exp[&S[Xsl({)]]

(41)

where

S[Xsl({)]=|
t

0 \
dXsl({)

d{ + d{ |
{

0 \
dXsl({$)

d{$ + d{$ ,({&{$)+* |
t

0
d{ \dXsl({)

d{ +
(42)

Below we discuss the asymptotical forms of 9sl(x0 , x0(0), t | L) using
Eqs. (41) and (42) in the limits |{&{$|<{R and |{&{$|>{R .

B. Asymptotic Behavior of 9sl(x0 , x0(0), t | L)

We focus first on the behavior in the intermediate-time limit, t<{R .
Note, however, that since {RtN 2, for sufficiently long chains this inter-
mediate-time regime may last over quite an extended time interval.
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It follows from Eqs. (41) and (42) that for t<{R the internal relaxa-
tions of the chain are most important and lead to the following form of the
action

S[Xsl({)]=\;K
D +

1�2

|
t

0 \
�Xsl({)

�{ + d{ |
{

0 \
�Xsl({$)

�{$ + d{$

- |{&{$|

+* |
t

0
d{ \dXsl({)

d{ + (43)

Now S in Eq. (43) is non-local and possesses non-Wiener scaling properties.
In particular, it yields for the mean-square displacement of any chain's
bead, including the slip-link the following law(19, 24, 25)

x2
j (t)tt1�2 (44)

i.e., a subdiffusive behavior, which signifies that (for the time scales con-
sidered here) the trajectories of the chain's beads are spatially more con-
fined that there of simple Brownian particle.

Now, one can readily find that the optimal trajectory X� sl({) which
minimizes the action in Eq. (43) obeys the following Euler equation

d
d{ \\

;K
D +

1�2

|
{

0
X�4 sl({$)

d{$

- {&{$
+*+=0 (45)

We seek the solution of Eq. (45) in the form

X�4 sl({$)=A({$):

where {$={u and 0�u�1. Substituting this form into Eq. (45), we get the
functional equation

\;K
D +

1�2

A{:+1�2 |
1

0

u: du

- 1&u
+*=C (46)

where C is some constant. Note now, that the left-hand side of Eq. (46) is
independent of { for :=&1�2 only, which thus fixes the value of : to
:=&1�2. Hence, we obtain

X�4 sl({)=
C&*

? \ D
;K{ +

1�2

(47)
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which leads to the following expression for the minimal action

S[X� sl({)]=
2
? \

Dt
;K +

1�2

(C&*)2+*(x0&x0(0)) (48)

In turn, the value of the constant C can be found by integrating Eq. (47),
which gives:

C=*+
?
2 \

;K
Dt +

1�2

(x0&x0(0))

Substituting this expression into Eq. (48), we arrive at the final equation
for the minimal action

S[X� sl({)]=
?
2 \

;K
Dt +

1�2

(x0&x0(0))2+*(x0&x0(0)) (49)

Next, taking advantage of Eqs. (49) and (41), we find that the prob-
ability that the slip-link which is at point x0 at t=0 will stay inside the
interval [0, L] until time t is given to exponential accuracy by

9sl(x0 , x0(0), t | L)r :
�

m=&�

exp {&
2
? \

;K
Dt +

1�2

(x0&x0(0)&2mL)2= (50)

which yields, by virtue of the ``mirror principle,'' the following result

9sl(x0 , x0(0), t | L)r :
�

m=&�

exp {&
?m2

2L2 \Dt
;K+

1�2

sin \?mx0

L + sin \?mx0(0)
L +=

(51)

Further on, integrating Eq. (43) over x0 and x0(0), we get for the position-
averaged function 9sl(t | L) (see Eq. (13))

9sl(t | L)r :
�

l=0

(2l+1)&2 exp {&
?(2l+1)2

2L2 \ Dt
;K +

1�2

= (52)

and consequently, the desired probability Psl(t) that the slip-link will not
encounter any of the traps until time t is given by the following integral

Psl(t)r :
�

l=0

(2l+1)&2 |
�

0
dL exp \&

?2(2l+1)2

L2 D%&ntrL+ (53)
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where for notational convenience we have introduced the ``effective'' time %,
where %=(t�;KD)1�2�2?. Note that Eq. (53) becomes identical to Eq. (17)
upon the mere replacement t � %, which readily enables us to get the corre-
sponding decay forms from Eqs. (18). We recall, however, that Eq. (53) is
valid only for t<{R , which will result in a slightly more complicated over-
all decay pattern than the one described by Eqs. (18).

Consider next the evolution of 9sl(x0 , x0(0), t | L) and, respectively, of
Psl(t) in the limit t>{R . Note that here the action in Eq. (42) reduces to
the standard result

S[X� sl({)]=
N

4D |
t

0
d{ \dX� sl({)

d{ +
2

+* |
t

0
d{ \dX� sl({)

d{ + (54)

which is simply the action of an isolated Brownian particle which moves
with the diffusion coefficient D�N (compare to Eq. (22)). Consequently, in
this time limit we have that the mean-square displacement of the slip-link
obeys

x2
0(t)t

D
N

t (55)

and the probability Psl(t) follows

Psl(t)r :
�

l=0

(2l+1)&2 |
�

0
dL exp \&

?2(2l+1)2 Dt
NL2 &ntrL+ (56)

Note that this result could be expected on intuitive grounds, since, as we
have already mentioned, in the limit t>{R the motion of every bead of the
chain follows mainly that of chain's center-of-mass.

C. Trapping Pattern Psl(t) for the Slip-Link of a Rouse Chain

Consider first the case of an infinitely long chain, then {R=� and the
dynamics of the slip-link is described by Eqs. (39), (40.B) and (44) over the
entire time domain. Comparing the decay forms in Eqs. (17), (18) and (53),
we readily find that the probability that the slip-link will not encounter any
of the traps until time t shows the following two stage decay pattern:

P(t)r{
exp \&

2
?

ntr(4Dt�;K )1�4+ ,

exp \&
3
2

n2�3
tr (?2Dt�;K )1�6+ ,

for tm<<t<<t~ c, 1 ,

for t>>t~ c, 1 ,

(A)

(B)
(57)
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In Eq. (57) the crossover time t~ c, 1 separating the regimes A and B obeys
t~ c, 1r;K�Dn4

tr . Note that t~ c, 1r(bntr)
&2 tc , where b is the mean distance

between the chain's beads in equilibrium and tc is the corresponding cross-
over time in Eq. (18). Hence, for systems with a small density of traps t~ c, 1

can be significantly larger than the monomer crossover time tc in Eq. (18).
Note also that the Eq. (57.A) is the mean-field, Smoluchowski-type result
corresponding to the sub-diffusive motion of the slip link, described by
Eq. (44), in presence of uniformly distributed traps; the exponent in
Eq. (57.A) is just the product of the trap mean density and the mean maxi-
mal range (span) of the slip link displacement. On the other hand, Eq. (57.B)
stems from the interplay between exponentially rare, large trap-free voids,
(the large-L tail of Eq. (16)), and anomalously confined trajectories of the
slip-link. Equation (57.B) also describes the long-time tail of the moment
generating function of the Wiener sausage volume for the the slip-link tra-
jectories of an infinitely long chain.

We turn next to the case of finite chains, and hence to finite {R , which
sets the upper bound on the time of applicability of the decay pattern in
Eq. (57). Here, at times greater than {R the conventional diffusive motion
of the slip-link is restored, Eqs. (39), (40.A) and (55), and the decay has a
form similar to that in Eqs. (1),

P(t)r{exp(&4ntr(Dt�?N )1�2),
exp(&3(?2n2

tr Dt�4N )1�3),
{R<<t<<t~ c, 2 ,
t>>t~ c, 2

(A)
(B)

(58)

Here the crossover time t~ c, 2 between the A and B regimes is given by
t~ c, 2rN�Dn2

tr=Ntc .
Note, however, that the overall decay pattern of Psl(t) is not the does

not necessarily follow sequentially after Eq. (57), i.e., the sequence given by
Eqs. (57.A), (57.B), (58.A) and finally, (58.B) may be realized only if the
crossover times would obey the following multiple inequality tm<<t~ c, 1<<
{R<<t~ c, 2 which practically is never the case. To show this explicitly and to
construct the actual overall decay pattern, it is expedient to rewrite the
crossover times t~ c, 1 and t~ c, 2 in terms of the Rouse time {R . We have then
t~ c, 1rQ&4{R and t~ c, 2rQ&2{R , where Q=ntr(bN 1�2), i.e., is equal to the
mean number of traps in the area covered by a Rouse chain of arclength
bN in its typical equilibrium configuration.

Below we analyse different possible situations with respect to the
values of the parameters Q and q=ntrb and discuss the corresponding
decay patterns.

Case I. High Density of Traps, qt1, and Long Chains, Q<<1.
Note first that in this case the crossover time t~ c, 1 is comparable to the
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microscopic diffusion time, i.e., t~ c, 1ttmtb2�D, which implies that the
Smoluchowski-type regime corresponding to the sub-diffusive slip-link
motion, Eq. (57.A), is unobservable. Hence, the law in Eq. (57.B) will
describe the decay of Psl(t) until tr{R . Further on, the condition Q>>1
implies that t~ c, 2<<{R and the regime described by Eq. (58.A) does not
exist. Consequently, the overall decay pattern in the Case I reads

Psl(t)r{exp(& 3
2 n2�3

tr (?2Dt�;K )1�6),
exp(&3n2�3

tr (?2Dt�4N )1�3),
tm<<t<<{R ,
t>>{R ,

(A)
(B)

(59)

Note that both A and B regimes are essentially non-mean-field and stem
from the presence of fluctuation trap-free voids. We also remark that in
Eqs. (59) the most representative regime is the one in, Eq. (59.A), which is
associated with the sub-diffusive behavior of the slip-link, Eq. (44). Note
that the value of Psl(t) at the crossover time separating the A and B
regimes, i.e., Psl(t={R), is of order of exp(&Q2�3)<<1, which means that
the probability that the slip-link will be trapped during the stage described
by Eq. (59.A) is considerably higher than the probability that it will be
trapped according to the law in Eq. (59.B).

We note finally that the behavior in Eqs. (59.A) and (59.B) appears
to be compatible, in regard to the time-dependence, with the heuristic
generalization of the results for a single particle trapping in case when the
latter possesses anomalous diffusive properties, Eq. (3.B). Thus Eq. (3.B)
with df =4, Eq. (44), (which corresponds to anomalous sub-diffusive
motion of the slip-link at times less than the Rouse time), reproduces the
time dependence in Eq. (59.A), while setting df =2 in Eq. (3.B), (which
applies to the conventional diffusive motion with renormalized diffusion
coefficient in Eq. (55)), we arrive at Eq. (59.B).

Case II. Low Density of Traps, q<<1, and Very Long Chains,
Q>>1. In this case t~ c, 1>>tm , which implies that the regime in Eq. (57.A)
describes the initial kinetic stage. Next, since here t~ c, 1<<{R , the regime in
Eq. (57.B) will also exist and will describe the intermediate-time kinetic
behavior of Psl(t). Lastly, the final stage will follow the decay in Eq. (58.B),
because t~ c, 2 appears to be much less than the Rouse time {R and thus the
regime in Eq. (58.A) will be absent. Consequently, in Case II one has the
following overall decay pattern:

exp(& 2
? ntr(4Dt�;K )1�4), tm<<t<<t~ c, 1 , (A)

Psl(t)r{exp(& 3
2 n2�3

tr (?2Dt�;K )1�6), t~ c, 1<<t<<{R , (B) (60)

exp(&3(?2n2
trDt�4N )1�3), t>>{R , (C)
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In Eqs. (60) the decay laws in the first two lines are associated with the sub-
diffusive motion of the slip-link and describe the mean-field, Smoluchowski-
type (A) and fluctuation-induced (B) kinetic stages, respectively, while the
law in the third line describes the survival of a Brownian particle (with dif-
fusion coefficient D�N ) in the fluctuation trap-free voids. Note that here the
most representative regime is the one associated with the sub-diffusive
motion in the slip-link and fluctuation trap-free voids, namely, regime (B).
As in Case I, we have here Psl(t={R)rexp(&Q2�3), which is very small.
This implies that the most probable decay is given by Eq. (60.B). The first
stage, i.e., the decay described by Eq. (60.A), appears to be relatively unim-
portant, since during this stage Psl(t) does not drop appreciably,
Psl(t=t~ c, 1)r1�3.

Note that again, as in the Case I, Eqs. (60.A) to (60.C) agree with the
heuristic prediction of Eqs. (3.A) and (3.B). Namely, Eq. (60.A) corre-
sponds to the result in Eq. (3.A) with df =4, Eq. (44), Eq. (60.C) yields the
same time-dependence as Eq. (3.B) with df =4, Eq. (44), while the long-
time decay in Eq. (60.C) coincides with that given by Eq. (3.B) when df =2,
i.e., when conventional diffusive motion is restored.

Case III. Low Density of Traps, q<<1, and Short Chains, Q<<1.
In this particular situation we have that t~ c, 1>>tm and consequently, the
initial decay obeys Eq. (57.A). Further on, since here t~ c, 1 also exceeds the
Rouse time, i.e., t~ c, 1>>{R , the regime predicted by Eq. (57.B) is absent,
which means that the decay in Eq. (57.A) crosses over at t={R to the
decay predicted by Eq. (58.A). Lastly, the stretched exponential dependence
in Eq. (58.A) is followed at t>t~ c, 2 , t~ c, 2>>{R by the form Eq. (58.B).
Hence, in Case III one has that Psl(t) follows

exp(& 2
? ntr(4Dt�;K )1�4), tm<<t<<{R , (A)

Psl(t)r{exp(&4ntr(Dt�?N )1�2), {R<<t<<t~ c, 2 , (B) (61)

exp(&3n2�3
tr (?2Dt�4N )1�3), t>>t~ c, 2 , (C)

In this case, however, only the last, fluctuation-induced regime C appears
to be significant; one can readily verify that Psl(t) practically does not
change during the regimes A and B, Psl(t=t~ c, 2)rexp(&4�?)t1.

We note finally that also in the Case III the decay pattern agrees with
the prediction in Eqs. (3). Here, the regimes described by Eqs. (61.A) and
(61.B) correspond to the mean-field decay law in Eq. (3.A) with df =4 and
df =2, respectively, while the long-time decay in Eq. (61.C) is compatible
with the time dependence predicted by Eq. (3.B) with df =2.
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V. CONCLUSIONS

To summarize, we have studied the dynamics of an isolated Rouse
chain, which diffuses in a three-dimensional space under the constraint that
one of its extremities, the slip-link, may move only along a line containing
randomly placed immobile traps. For such a model we have computed
exactly the time evolution of the probability Psl(t) that the slip-link will not
encounter any of the traps until time t, i.e., that the chain will remain com-
pletely mobile until this moment of time. We have shown that in the most
general case this probability is a succession of several stretched-exponential
functions of time, where the dynamical exponents depend on the time of
observation and on characteristic crossover times. We have specified these
crossover times and have determined explicitly the forms of Psl(t) in several
particular situations. We expect our results to serve as benchmarks in more
complex situations, which are not amenable to a fully analytical treatment.
Thus programs involving realistic computer simulations can be tested by
comparing the results to our exact expressions.
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